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Abstract

Modeling of laser heating process minimizes the experimental cost and enables to optimize the process parameters

for improved end product quality. In the present study, an analytical solution for laser conduction limited heating due

to time exponentially varying pulse is presented. The governing equation of heat diffusion is solved analytically using a

Laplace transformation method. The closed form solution is validated by a solution for a step input pulse intensity

presented in the previous study as well as numerical predictions. Temperature rise inside the substrate material is

computed for steel. It is found that the present solution reduces to previous solution once the pulse parameter (b ¼ 0)
are set to zero. Temperatures obtained from the closed form solution agree well with the numerical predictions.

Moreover, temperature rises rapidly in the surface vicinity due to time exponentially varying pulse. The pulse parameter

ðb�=c�Þ has a significant effect on the temperature rise. In this case, low value of ðb�=c�Þ results in high temperature rise
in the surface vicinity of the substrate material. � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Laser conduction limited heating process is impor-

tant when laser is used as a surface treatment tool in

industry, since the quality of the end product strongly

depends on the laser heating conditions. The modeling

of laser heating process gives insight into the physical

parameters affecting the heating process, minimizes the

experimental cost, and enables to optimize the process

parameters such as laser and workpiece parameters.

Considerable research studies were carried out to

explore the laser heating process. Some of them were

involved with the analytical solution to the heating

problem. Moreover, analytical solution gives explicit

functional relation between temperature and laser pulse

and workpiece material properties as well as reduces

considerably the simulation time. Consequently, ana-

lytical solution to the heating process is fruitful for laser

heating applications. An analytical solution for a pulse

laser heating was introduced by Ready [1]. Laser heating

mechanism including evaporation process during laser

drilling of the metallic substrates was investigated ana-

lytically by Yilbas et al. [2]. They obtained the closed

form solution for the temperature rise due to a step in-

put intensity pulse and determined the drilling efficiency.

Laser heating of a two-layer system was formulated by

Al-Adawi et al. [3] using a Laplace transformation

method. The time required for the melting of the films

situated on a glass substance was computed. Heat con-

duction in a moving semi-infinite solid subjected to a

pulsed laser irradiation was studied analytically by

Modest and Abakians [4]. They obtained a closed form

solution for the temperature distribution inside the

substrate material. However, their solution was limited

to a surface heat source heating where as deposited laser

energy was absorbed by the substrate material within the

absorption depth. The analytical solution for a two-di-

mensional solid with a surface heat source was obtained

by Aviles-Ramos et al. [5]. The closed form solution

enables to predict the surface temperature rise and the

heat flux across the surface. An analytical solution for a

conduction limited heating was studied by Yilbas and
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Shuja [6]. They obtained a closed form solution for a

temperature distribution inside the solid substrates and

introduced a dimensionless equilibrium temperature in-

side the substrate material.

In practical laser heating applications, the actual la-

ser pulse has time-dependent power intensity distribu-

tion. In most of the analytical approaches the temporal

variation of laser power intensity distribution was ig-

nored. This, in turn, results in considerable errors in the

solution of the heat conduction equation for a time-de-

pendent laser pulse. Therefore, temporal variation of

laser power intensity distribution resembling the actual

laser pulse needs to incorporated in the analysis when

obtaining the closed form solution to the practical

pulsed laser heating process. Yilbas [7] obtained the

closed form solution for the surface temperature rise due

to time exponentially varying laser heating pulse.

However, the study was limited to a formulation of the

surface temperature rise. Consequently, in the present

study, an analytical solution for the intensity time ex-

ponentially varying pulse is considered and the closed

form solution for the temperature rise inside the sub-

strate material is obtained. The effect of pulse parame-

ters (b and c) on the resulting temperature distribution is
investigated. The closed form solution is validated

through reducing the present solution to the solution for

a step intensity pulse presented in the previous study [8]

as well as comparing the results with their counterparts

predicted from the numerical simulations.

2. Mathematical modeling

The Fourier heat transfer equation for a laser time

exponentially varying heating pulse can be written as:

o2T
ox2

þ I1d
k

ðe�bt � e�ctÞe�dx ¼ 1
a
oT
ot

: ð1Þ

The temporal variation of laser output pulse is not

easily fitted by a simple mathematical expression and it

may be approximated by a form of exponential function.

Consequently, in order to account for the rise and fall

times of a laser pulse, two exponential terms resembling

almost a practical laser pulse are accommodated in the

analysis (Fig. 1) [8], i.e.,

I ¼ I1ðe�bt � e�ctÞ; ð2Þ

where

I1 ¼ ð1� rf ÞI0;

where rf is the reflection coefficient and I0 is the peak
power intensity, and parameters b and c can be chosen
to give the appropriate rise time for the pulse. Since the

governing equation of heat transfer is linear (Eq. (1)), it

is unnecessary to solve Eq. (1) for a complete pulse (full

pulse including b and c terms). Therefore, the complete
solution can be obtained by summation of the solutions

for the individual parts of the time exponential pulse

(half pulse including b or c term only). It should be
noted that the solution of half pulse satisfies the initial

and boundary conditions for a full pulse; therefore, the

rule of superposition is applicable.

Nomenclature

Cp specific heat (J/kg K)

I0 laser peak power intensity (W=m
2
)

I1 laser peak power intensity available at the

surface ðI0ð1� rf ÞÞ ðW=m
2Þ

k thermal conductivity (W/m K)

rf reflection coefficient

t time (s)

p Laplace variable (1/s)

x spatial coordinates (m)

x� dimensionless spatial coordinate (xd)

T temperature (K)

T � dimensionless temperature (ðT=I1Þkd)
Ts surface temperature (K)

t time (s)

t� dimensionless time (ad2t)
a thermal diffusivity (m2=s)
b pulse parameter (1/s)

b� dimensionless pulse parameter (bt)
c pulse parameter (1/s)

c� dimensionless pulse parameter (ct)
d absorption coefficient (1/m)

q density (kg=m3)

Fig. 1. Temporal variation of exponential function resembling

the heating pulse gðt�Þ ¼ expð�b�Þ � expð�c�Þ.
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Since the equation is linear, the complete solution can

be obtained by summation of the solutions for the in-

dividual parts of the time exponential. Therefore, the

Fourier equation to be solved reduces to:

o2T
ox2

þ I1d
k
exp½�ðbt þ dxÞ� ¼ 1

a
oT
ot

ð3Þ

with the boundary conditions:

At the surface ) x ¼ 0! oT
ox

� �
x¼0

¼ 0:

At infinity ) x ¼ 1 ! T ð1; tÞ ¼ 0:
ð4Þ

Initial condition:

At time zero ) t ¼ 0! T ðx; 0Þ ¼ 0: ð5Þ

The solution of Eq. (3) is possible in the Laplace domain

and inversion gives the solution. Therefore, the Laplace

transform of Eq. (3) and introducing the initial condi-

tion yields:

o2T
ox2

� g2T ¼ � I1d expð�dxÞ
kðp þ bÞ ; ð6Þ

where T ¼ T ðx; pÞ, g2 ¼ p=a, and p is the transform

variable. Eq. (6) has the solution:

T ¼ A expð�gxÞ þ B expðgxÞ � I1d expð�dxÞ
kðp þ bÞðd2 � g2Þ

; ð7Þ

where A and B are constants. Introducing the boundary

conditions into Eq. (7), the constants A and B can be

found, i.e.:

B ¼ 0;

A ¼ I1d
2

kgðp þ bÞðd2 � g2Þ
;

After substitution of constants A and B into Eq. (7),

it yields:

T ¼ � I1d
kðp þ bÞ

d expð�gxÞ
gðg2 � d2Þ

"
� expð�dxÞ

ðg2 � d2Þ

#
: ð8Þ

Eq. (8) gives the solution for temperature in the La-

place domain. In order to obtain the solution in the

physical domain, the Laplace inversion of Eq. (8) is

necessary. There are two ways to achieve the inversion,

since the complete solution is a product of two p-func-

tions. Consequently, in the first method, the inversion of

solution can be expressed as a convolution integral

which then can be evaluated or in the second method,

entailing expansion of the functions into partial frac-

tions. The second method is adopted at present due to

the simplicity. Consider the term:

d expð�gxÞ
gðp þ bÞðg2 � d2Þ

;

which can be written as

ad expð�gxÞ
gðp þ bÞðp � ad2Þ

:

This can be expanded to:

ad expð�gxÞ
gðb þ ad2Þ

1

p � ad2

�
� 1

p þ b

�
: ð9Þ

The inversion of above expression gives [10]:

1

2

a

b þ ad2

� �
id

ffiffiffi
a
b

r
expðbtÞ exp

 "(
� ix

ffiffiffi
b
a

r !

� erf c x
2
ffiffiffiffi
at

p
�

:� i
ffiffiffiffiffi
bt

p �

� exp ix

ffiffiffi
b
a

r !
erf c

x
2
ffiffiffiffi
at

p
�

þ i
ffiffiffiffiffi
bt

p �#

þ expðad2tÞ expð
�

� dxÞerf c x
2
ffiffiffiffi
at

p
�

�
ffiffiffiffiffiffiffiffiffi
ad2t

p �

� expðdxÞerf c x
2
ffiffiffiffi
at

p
�

þ
ffiffiffiffiffiffiffiffiffi
ad2t

p ��)
: ð10Þ

In a similar way, term:

expð�dxÞ
ðp þ bÞðg2 � d2Þ

can be written as:

a expð�dxÞ
ðp þ bÞðp � ad2Þ

: ð11Þ

The Laplace inversion of Eq. (11) yields:

a expð�dxÞ
b þ ad2

½expðad2tÞ � expð�btÞ�: ð12Þ

Consequently, substituting Eqs. (10) and (12) into

Eq. (8) gives the full solution obtained by inverse La-

place transformation, i.e.:

T ðx; tÞ ¼ I1d
2k

a

bþ ad2

� �
id

ffiffiffi
a
b

r
expð

(
�btÞ

� exp ix

ffiffiffi
b
a

r !
erf c

x
2
ffiffiffiffi
at

p
�"

þ i
ffiffiffiffiffi
bt

p �

� exp
 
� ix

ffiffiffi
b
a

r !
erf c

x
2
ffiffiffiffi
at

p
�

� i
ffiffiffiffiffi
bt

p �#

þ expðad2tÞ expðdxÞerf c x
2
ffiffiffiffi
at

p
��

þ d
ffiffiffiffi
at

p �

� expð� dxÞerf c x
2
ffiffiffiffi
at

p
�

� d
ffiffiffiffi
at

p ��

þ 2expð� dxÞ½expðad2tÞ� expð�btÞ�:
)

ð13Þ
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After using the relationship:

erf cð�zÞ ¼ 2� erf cðzÞ

and

erf cðzÞ ¼ 1� erf ðzÞ

gives the closed form solution for the temperature rise

inside the substrate material:

T ðx; tÞ ¼ I1d
2k

a

b þ ad2

� �
id

ffiffiffi
a
b

r
expð

(
� btÞ

� exp ix

ffiffiffi
b
a

r !
erf c

x
2
ffiffiffiffi
at

p
�"

þ i
ffiffiffiffiffi
bt

p �

� exp
 
� ix

ffiffiffi
b
a

r !
erf c

x
2
ffiffiffiffi
at

p
�

� i
ffiffiffiffiffi
bt

p �#

þ expðad2tÞ expðdxÞerf c x
2
ffiffiffiffi
at

p
��

þ d
ffiffiffiffi
at

p �

� expð � dxÞerf c d
ffiffiffiffi
at

p�
� x
2
ffiffiffiffi
at

p
�

� 2 expð � ðbt þ dxÞÞ
�)

: ð14Þ

Eq. (14) can be non-dimensionalized using the following

non-dimensional parameters:

t� ¼ ad2t;

b� ¼ bt;

x� ¼ xd;

T � ¼ T
I1
kd:

The resulting non-dimensional equation is

T �ðx�; t�Þ ¼ 1
2

t�

b� þ t�

� �
i

ffiffiffiffiffi
t�

b�

r
expð

(
� b�Þ

� exp ix�
ffiffiffiffiffi
b�

t�

r !
erf c

x�

2
ffiffiffiffi
t�

p
�"

þ i
ffiffiffiffiffi
b�

p �

� exp
 

� ix�
ffiffiffiffiffi
b�

t�

r !
erf c

x�

2
ffiffiffiffi
t�

p
�

� i
ffiffiffiffiffi
b�

p �#

þ expðad2tÞ expðx�Þerf c x�

2
ffiffiffiffi
t�

p
��

þ
ffiffiffiffi
t�

p �

� expð � x�Þerf c
ffiffiffiffi
t�

p�
� x�

2
ffiffiffiffi
t�

p
�

� 2 expð � ðb� þ x�ÞÞ
�)

: ð15Þ

The closed form solution for the full pulse can be

written as

T �ðx�; t�Þ ¼ 1
2

t�

b� þ t�

� �
i

ffiffiffiffiffi
t�

b�

r
expð

 (
� b�Þ

� exp ix�
ffiffiffiffiffi
b�

t�

r !
erf c

x�

2
ffiffiffiffi
t�

p
�"

þ i
ffiffiffiffiffi
b�

p �

� exp
 
� ix�

ffiffiffiffiffi
b�

t�

r !
erf c

x�

2
ffiffiffiffi
t�

p
�

� i
ffiffiffiffiffi
b�

p �#

þ expðt�Þ expðx�Þerf c x�

2
ffiffiffiffi
t�

p
��

þ
ffiffiffiffi
t�

p �

� expð � x�Þerf c
ffiffiffiffi
t�

p�
� x�

2
ffiffiffiffi
t�

p
�

� 2 expð � ðb� þ x�ÞÞ
�!

� t�

c� þ t�

� �
i

ffiffiffiffi
t�

c�

r
expð

 
� c�Þ

� exp ix�
ffiffiffiffi
c�

t�

r !
erf c

x�

2
ffiffiffiffi
t�

p
�"

þ i
ffiffiffiffi
c�

p �

� exp
 
� ix�

ffiffiffiffi
c�

t�

r !
erf c

x�

2
ffiffiffiffi
t�

p
�

� i
ffiffiffiffi
c�

p �#

þ expðt�Þ expðx�Þerf c x�

2
ffiffiffiffi
t�

p
��

þ
ffiffiffiffi
t�

p �

� expð � x�Þerf c
ffiffiffiffi
t�

p�
� x�

2
ffiffiffiffi
t�

p
�

� 2 expð � ðc� þ x�ÞÞ
�!)

; ð16Þ

where c� ¼ ct.
Eq. (16) is used to compute the dimensionless tem-

perature profiles inside the substrate material. The laser

pulse and material properties used in the computations

are given in Table 1.

3. Numerical method

A numerical method (finite difference scheme) is

employed to discretize the conduction equation (Eq.

(1)). An explicit scheme is used in the numerical

method, which is well established in the literature. The

stability criteria for the equation discretized is as fol-

lows:

2a2d2

Ds

����
���� > a2d2

Ds

����� � 2kd
2

ðDxÞ2

�����þ kd2

ðDxÞ2

�����
�����:

The boundary conditions (Eq. (4)) and initial con-

dition (Eq. (5)) are imposed in the numerical simula-

tion. The computations are carried out according to

substrate material and pulse properties given in

Table 1.
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4. Results and discussions

An analytical solution for the temperature rise due to

a time exponentially varying laser heating pulse is ob-

tained using a Laplace transformation method. The

closed form solution is simulated for steel. The proper-

ties of the substrate material and laser pulse are given in

Table 1.

The closed form solution becomes identical to the

solution obtained from the previous study [8], once the

pulse parameter b is set to zero in Eq. (14), i.e., the
closed form solution reduces to a step input intensity

pulse. The relevant analysis is given in Appendix A.

Fig. 2(a) shows dimensionless temperature profiles

inside the substrate material at different heating periods

for the pulse parameter b�=c� ¼ 1=3. Temperature
profiles decay gradually in the surface region and sharp

decay occurs as the distance from the surface towards

the solid bulk increases. This situation is more pro-

nounced at heating period of 1.68. This is because of

the pulse profile, i.e. the power intensity is high at the

heating period of 1.68 (Fig. 1). Moreover, the gradual

decay of temperature profile in the surface vicinity is

due to internal energy gain of the substrate material. In

this case, energy absorbed by the substrate material

from the irradiated field is converted into internal en-

ergy gain of the substrate material. Since the power

intensity absorbed by the substrate material varies ex-

ponentially with depth, temperature rise due to energy

gain shows similar trend with the absorbed energy.

Consequently, temperature gradient becomes low in the

surface vicinity. This can also be seen from Fig. 2(b), in

which temperature gradient is shown. Moreover, due to

low temperature gradient, the diffusional energy

transport from surface vicinity to the solid bulk is

small. As the heating period progresses, energy ab-

sorbed in the region irradiated by a laser beam results

in increase in internal energy gain of the substrate

material. Therefore, temperature differential across the

surface vicinity and the region next to surface vicinity

increases. The diffusional energy transport increases

from surface vicinity to the bulk of the substrate ma-

terial. A stage is reached such that temperature gradi-

ent becomes minimum at some depth below the

surface. In this case, an energy balance occurs among

the absorbed energy, internal energy gain, and diffu-

sional energy transport. The location of minimum

temperature gradient changes with the heating period,

i.e. depending on the amount of energy absorbed and

the heating period, the location of minimum tempera-

ture gradient moves away from the surface.

Fig. 3 shows dimensionless temperature profiles in-

side the substrate material at different heating periods

for pulse parameter b�=c� ¼ 1=5. The behavior of tem-
perature curves is similar to those shown in Fig. 2(a),

provided that the magnitude of temperature rise is

higher for b�=c� ¼ 1=3. This is because of the pulse in-
tensity distribution, i.e., as b�=c� increases the magni-
tude of peak power intensity increases and the peak

power intensity moves towards the pulse beginning (Fig.

1). Consequently, the amount of irradiated energy ab-

sorbed by the substrate material reduces during the early

heating period for b�=c� ¼ 1=5 pulse profile, which in
turn results in less temperature rise inside the substrate

material as compared to that corresponding to

b�=c� ¼ 1=3.

(a) (b)

Fig. 2. (a) Dimensionless temperature inside the substrate material at different heating periods for b�=c� ¼ 1=3. (b) Dimensionless
temperature gradient inside the substrate material at different heating periods for b�=c� ¼ 1=3.

Table 1

Pulse and thermal properties of substrate used in the computation

I1 ðW=m2Þ b and c (1/s) d (1/m) a ðm2=sÞ Cp (J/kg K) k (W/m K) q ðkg=m3Þ
2� 1013 107–109 6:16� 107 0:224� 10�5 460 80.3 7880
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Fig. 4(a) shows temporal variation of dimensionless

temperature at different locations inside the substrate

material for pulse parameter b�=c� ¼ 1=3. Temperature
profiles predicted from the numerical simulation for

x� ¼ 0 and x� ¼ 1:2 are also shown in figure. When
comparing temperature profiles obtained from the

closed solution with its counterpart predicted from the

numerical simulations, both results are in good agree-

ment. The small discrepancies between the both results

during the temperature rise period are negligibly small.

The rise of temperature in the surface vicinity is higher

than those corresponding to some depth below the sur-

face. Moreover, temperature rises rapidly in the early

heating period and as the heating period progresses the

rate of temperature rise becomes almost steady up to the

point of its maxima. This can also be seen from Fig.

4(b), in which time derivative of temperature is shown.

The high rate of temperature rise in the surface vicinity

is because of the absorption of irradiated laser energy

within the absorption depth. In this case, during the

early heating period, internal energy gain of the sub-

strate material increases rapidly. This, in turn, results in

rapid rise of the temperature in this region. Moreover,

the rise of temperature at some depth below the surface

(x� > 3) is not considerable in the early heating period.
This is because of the energy transport mechanism. Since

the amount of absorbed energy is almost negligible in

this region (it is below the absorption depth), the rise of

temperature is due to diffusional energy transport in this

region. In this case, the rate of diffusional energy

transport in the early heating period is low due to low

temperature gradient in this region. As the heating pe-

riod progresses, the diffusional energy transport from

surface vicinity to solid bulk suppresses the high rate of

temperature rise in the surface vicinity. Consequently,

temperature rise becomes almost steady with increasing

time. At the point of minimum time derivative of tem-

perature ðoT �=ot�Þ (Fig. 4(b)), energy balance attains
among the absorbed energy, internal energy gain and

diffusional energy transport. The time corresponding to

minimum oT �=ot� progresses further away from the
pulse beginning as the depth from the surface increases

towards the solid bulk.

Fig. 5 shows the location of time corresponding to

the point of minimum ðoT �=ot�Þ for two different pulse
parameters. The location of minimum ðoT �=ot�Þ moves

(a) (b)

Fig. 4. (a) Dimensionless surface temperature at different location inside the substrate material for b�=c� ¼ 1=3. (b) Time gradient of
dimensionless surface temperature at different locations inside the substrate material for b�=c� ¼ 1=3.

(a) (b)

Fig. 3. (a) Dimensionless temperature inside the substrate material at different heating periods for b�=c� ¼ 1=5. (b) Dimensionless
temperature gradient inside the substrate material at different heating periods for b�=c� ¼ 1=5.
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away from the surface as the heating period progresses.

The variation of heating period with depth corre-

sponding to minimum ðoT �=ot�Þ varies linearly. This
indicates that the occurrence of steady temperature rise

inside the substrate material depends on the heating

period, i.e., the steady temperature rise inside substrate

material varies at different depths. In this case, increas-

ing depth delays the initiation of steady temperature rise

inside the substrate material. It should be noted that the

steady temperature rise ends immediately as the rise of

temperature diminishes due to the exponential pulse

profile. As laser pulse intensity reduces from its peak,

temperature decreases from its peak due to time

exponentially varying pulse profile. The effect of b�=c�

on the location and heating period corresponding to

minimum ðoT �=ot�Þ is notable, since the slope of time–
distance curve changes in Fig. 5, i.e., reducing b�=c�

increases the location of minimum ðoT �=ot�Þ inside the
substrate material for a given heating period. This

situation reverses as the heating period progresses

further (t� > 5).

5. Conclusions

An analytical solution for temperature rise inside a

solid substrate due to time exponentially varying laser

pulse is presented. The closed form solution is computed

for steel to obtain temperature profiles. To examine the

effect of pulse parameter ðb�=c�Þ on the resulting tem-
perature profiles, two values of pulse parameter are

considered. To validate the closed form solution ob-

tained from the present study, pulse parameter (b) is set
to zero in Eq. (14), which in turn results in a closed form

solution for a step input intensity pulse as derived from

the previous study. It is found that the closed form so-

lution becomes identical to previously obtained analyt-

ical solution once b in Eq. (14) is set to zero.

Temperatures obtained from the closed form solution

are in good agreement with its counterpart predicted

from the numerical simulations. Temperature rises rap-

idly in the surface vicinity of the substrate material in the

early heating period and the effect of b�=c� on temper-
ature rise is significant. The specific conclusions derived

from the present study can be listed as follows:

1. Temperature rise is higher in the surface vicinity of

the substrate material as compared to some depth be-

low the surface. This is because of the absorption of

the irradiated energy within the absorption depth.

Temperature gradient is lower in the surface vicinity,

which indicates that the internal energy gain domi-

nates the diffusional energy transport from surface vi-

cinity to the solid bulk. Moreover, as the depth below

the surface increases towards the solid bulk, the diffu-

sional energy transport dominates over the energy ex-

change mechanism, i.e. internal energy gain of the

substrate material due to absorption of the irradiated

field becomes negligible beyond the absorption

depth.

2. In the early heating period, temperature rises rapidly

in the surface vicinity and as the heating progresses,

the rise of temperature attains almost steady until it

reduces from its maxima. At the point of initiation

of steady temperature rise, internal energy gain and

diffusional energy transport are in balance such that

internal energy rises steadily.

3. The time and location corresponding to ðoT �=ot�Þ
maxima varies linearly. In this case, increasing time

results in increasing location of ðoT �=ot�Þ maxima in-
side the substrate material. Moreover, the effect of

pulse parameter ðb�=c�Þ on the resulting ðoT �=ot�Þ
maxima is significant. The location of ðoT �=ot�Þ max-
ima occurs in the early heating period as b�=c� in-
creases.
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Appendix A. Closed from solution for conduction limited

heating case

The Fourier heat transfer equation governing the

laser step input pulse intensity can be written as

k
o2T
ox2

þ I0ð1� rf Þd expð�dxÞ ¼ qCp
oT
ot

ðA:1Þ

with the initial condition

At time t ¼ 0! T ðx; 0Þ ¼ 0:

Fig. 5. Dimensionless distance and time corresponding to

minimum dT �=dt� for two b�=c�.
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The boundary conditions:

At the surface ) x ¼ 0! oT
ox

����
x¼0

¼ 0

and

x at infinity ) x ¼ 1 ! T ð1; tÞ ¼ 0:

The solution of Eq. (A.1) is obtained in the previous

study using a Laplace transformation method [10],

which yields

T ðx; tÞ ¼ 2I0ð1� rf Þ
k

ffiffiffiffi
at

p
i erf c

x
2
ffiffiffiffi
at

p
� �

� I0
kd

� expð�dxÞ þ I0
2kd
expðad2t � dxÞ

� erf c d
ffiffiffiffi
at

p�
� x
2
ffiffiffiffi
at

p
�
þ I0
2kd

� expðad2t þ dxÞerf c d
ffiffiffiffi
at

p�
þ x
2
ffiffiffiffi
at

p
�
; ðA:2Þ

where

ierf cðzÞ ¼ 1ffiffiffi
p

p expð�z2Þ � zerf cðzÞ:
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